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LElTER TO THE EDITOR 

Nature of the singularity in a spin-glass model 

R J Cherry and C Dombt 
Department of Theoretical Physics, King’s College, Strand, London, WC2R 2LS, UK 

Received 15 November 1977 

Abstract. High temperature series expansions are developed for the specific heat of a 
random bond Ising model of a spin glass for standard two- and three-dimensional lattices. 
Pad6 approximant analysis of the series indicates the absence of any singularity on the 
positive real axis. The solution for the Bethe lattice is investigated using results obtained 
previously for the Mattis random site model. It is concluded that the high temperature 
partition function and all its derivatives with respect to magnetic field have no singularity 
at the transition temperature. This behaviour may also extend to lattice models. 

1. Introduction 

We consider an Ising random bond model of a spin glass (Edwards and Anderson 
1975) in which the interactions have equal probability of being f J. It is assumed that 
only nearest-neighbour interactions are non-zero. The development of series expan- 
sions for the model was discussed in general terms by Domb (1976) who showed that 
in the high temperature phase all spin-pair correlations are zero, and the magnetic 
susceptibility corresponds to uncoupled spins. However, the specific heat and the even 
derivatives of the susceptibility do show cooperative effects. 

Using the method described in Domb (1 976) we have derived high temperature 
expansions for the specific heat of this model for a number of lattices in two and three 
dimensions. Writing the partition function for the model in zero field in the form 

lnZN(P,O)=Nln2+$Nq 1ncoshPJ+CaznwZn (w = tanh PJ) ,  (1) 
n 

where the bar denotes a stochastic average, we list in table 1 the values of azn for the 
simple quadratic (sQ), triangular (T), simple cubic (sc), body-centred cubic (BCC) and 
face-centred cubic (FCC) lattices. It will be seen that the behaviour of the coefficients is 
very irregular, and no clear pattern emerges even in regard to the oscillations in sign. 

2. Specific heat 

The corresponding specific heat series derived from (1) is of the form 

C&h% = (PJ)’ bznwZn, 
n 

I’ Work performed while on leave of absence at Bar-Ilan University, Ramat Gan, Israel. 
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Table 1. Coefficients aZn in the zero-field partition function expansion. 

n T FCC SQ sc BCC 

3 
4 
5 
6 
7 
8 
9 
10 
11 

-1 

3 

-12 
107i 
-71f 
3914 

-1; 

1 lf 

4017 

-4 
-164 
-12 
291 
1956 
-207: 

-868933 
-550140 
891336 

0 

0 
-1 
4 

-6: 
24 

-74 
212 

-4 0 

0 
- 14 

-11 
36 

-83: 
656 

-2250 
9996 

0 
-6 
0 

-50 
384 

-900 
9384 

-57524 
253592 

where the coefficients bzn are listed in table 2. These series were subjected to Pad6 
approximant analysis using a computer program provided by Dr C J Pearce. The 
important feature to emerge was the absence of any singularity on the positive real axis. 
For loose packed lattices there is a non-physical singularity given by 

w2--l/p 

where p is the self-avoiding walk limit; but there is no evidence of a singularity in the 
neighbourhood of 

w - l//.L1'* (4) 

as given by the self-avoiding polygon term @omb 1976). It seems that higher-order 
graphs whose contributions are alternately negative and positive remove this 
singularity. 

The results of the Pad6 approximant analysis for different lattices are shown in 
figures 1 and 2. There is a clear difference in behaviour between the closely packed 
lattices (T, FCC and BCC) which show a characteristic maximum and become negative 
at sufficiently low temperatures, and the loose packed lattices for which there is a 
fairly steady increase as the temperature is lowered. 

Tabk 2. Coefficients bZn in the specific heat series. 

n T FCC 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

3 
-3 
-30 
-12 
420 
810 

-5166 
-19242 
30564 
165822 
1518258 

6 
-6 

-120 
-636 
864 

39624 
270864 
-771216 

-26072232 
-152802828 
8221917 12 

2 
-2 
0 

-28 
64 

-168 
1016 

-3344 
11640 

-45508 
165352 

sc 

3 
-3 
0 

-84 
192 

-1560 
9720 

-35808 
250920 

6642504 
-1302732 

BCC 

4 
-4 
0 

-336 
768 

-7032 
84288 

-374328 
34 12944 

-28184752 
166388032 



Letter to the Editor L7 

I 
L.00 6.00 8.00 10.00 0.00‘ I2oo 

kTIJ 

40-2 LO 00- ,? 
\ 

- \  
\ 
\ 30 00- 

\ 
8 20~00- 

Ib) ’ 

, - --L- A-J 

6.00 8.00 1000 

k TIJ 

Figure 1. Pad6 approximant estimates of the specific heat of the high temperature phase 
for close-packed lattices: (a) FCC; ( b )  T; ( c )  BCC. 

3. Derivatives of susceptibility 

In regard to the second derivative of the susceptibility, Dr A P Young has pointed out 
that the discussion in Domb (1976) contains an error. In the calculation of (opi)’ it is 
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Figure 2. Pad6 approximant estimates of the high temperature phase for loose-packed 
lattices: ( a )  SO; ( b )  SC. 

possible for different pair correlation graphs which overlap to give a non-zero contri- 
bution as illust‘rated in figure 3; hence the conclusion that xi2’ has a singularity at 
w = w:’* given in the above paper is invalid. It is possible that the effect of these 
neglected terms is to remove the singularity as in the case of the specific heat. The 
point requires further investigation. 

Figure 3. Overlapping of correlation graphs to give non-zero contributions. 

4. Bethe lattice and Mattis model 

A number of investigations have referred to the solution for a spin glass on a Bethe 
lattice, but to the best of our knowledge no detailed description has yet been given of 
the nature of the transition. (Except in the one-dimensional case (Grinstein et al 
1976), for which there is no transition at non-zero temperature.) The Mattis model of 
random site spins (Mattis 1976) can be investigated exactly (Bideaux er a1 1976) and 
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for the Bethe lattice the random bond model is identical with this random site model. 
This can be seen at low temperatures by the one-to-one correspondence between 
excited states for the two models, and at high temperatures by the identity of the 
configurational structure of the high temperature series expansions. 

In fact for the Bethe lattice with no closed circuits the high temperature description 
given in Domb (1976) is valid (as pointed out by Young and Stinchcombe 1976). 
Hence we have the following behaviour of the high temperature functions for the spin 
glass model. 

(a )  The zero-field partition function In Z N  is identical with that of the standard 
Ising model In Zh, and has no singularities. 

(b) The zero-field susceptibility corresponds to uncoupled spins and has no 
singularity. 

(c) The second derivative of the susceptibility is related to the zero-field suscep- 
tibility of the standard Ising model, and has a singularity at wc= l /(q - 1)'l2 (w = 
tanh PJ, q = coordination number of lattice). 

(d) For higher derivatives if r is odd the 21th derivative of In ZN is identical with 
that for uncoupled spins; whilst if r is even the 2rth derivative of In ZN can be related 
to the rth and lower derivatives of In 2;. The first singularity is given by wc = 
1/(q-l)'l2, and there will be other singularities at lower temperatures of the form 

The low temperature behaviour can be derived as in Bideaux eta1 (1976), and is as 
follows. 

(i) The zero-field partition function lnZN is identical with that of the standard 
Ising model and has no singularity at the transition point wc = l /(q - 1). The transition 
consists of a discontinuity in specific heat. 

(ii) The zero-field susceptibility is related to the spontaneous magnetisation of the 
standard king model. It has a singularity at the transition point w, = l /(q - l ) ,  and 
rises to a maximum value at this point. Note that the singularity is at w, = l /(q - 1) and 
not at wc = l /(q - 1)'" which arises in high temperature functions. 

(iii) The second derivative of the susceptibility xi2) is related to the susceptibility 
of the standard Ising model below Tc and is therefore infinite at H = 0. However, if we 
take the limit as H + 0 we will get a function with a singularity at wc = l / (q - 1). Hence 
the transition occurs at a higher temperature than the singularity of the high tempera- 
ture second derivative, and the latter is not directly relevant to the transition. 

(iv) The 2rth derivative of lnZN is related to the rth derivative of 1nZh. All of 
these derivatives therefore have singularities at w, = l /(q - 1). The singularities in the 
corresponding high temperature functions have no direct relevance to the transition. 

We see therefore that the transition point is completely determined by the 
singularity in the low temperature behaviour. The high temperature functions them- 
selves give no evidence of any transition and can be continued in a metastable state 
below the transition. This is an unusual pattern of behaviour not encountered in any of 
the other models of critical behaviour. 

wc = (q - l)? 

5. Nature of singularity in the lattice model 

There is no obvious reason why the high temperature behaviour of a lattice model 
should be significantly different from that for a Bethe lattice. We have seen that the 
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free energy and susceptibility in zero field have the same singularity structure, and one 
may reasonably expect this to extend to higher derivatives. The main difference 
should lie in the low temperature behaviour, since the lowest energy state for a lattice 
model has a finite entropy, and this may destroy the ordering (Toulouse 1977). The 
behaviour of the order parameter may therefore be significantly different, as was 
indicated in the results of Young and Stinchcombe (1976) for the SQ lattice. 

But it seems unlikely that the finite entropy will result in the susceptibility reducing 
to that of uncoupled spins at low temperatures. This is not the case with the antifer- 
romagnetic triangular Ising lattice which also has a finite entropy at T=O (see e.g. 
Domb 1974). Hence we would expect a transition in susceptibility (but possibly a 
weak one) corresponding to the meet of the low and high temperature functions. 

Series expansions for the ‘order parameter susceptibility’ at high temperatures 
were calculated by Fisch and Harris (1977) for hypercubical lattices in d dimensions. 
We have learned recently from a preprint that the calculations have been extended to 
the free energy in zero field. In the region where our results overlap with their’s it is 
pleasing to record numerical agreement (except for a trivial factor of 2). The above 
authors draw the conclusion that there are no singularities for d < 4 but that singulari- 
ties and associated critical exponents appear when d < 4 < 6. We wish to point out, 
following the behaviour of the Bethe lattice, that the existence of a singularity in the 
high temperature expansion does not ensure that the singularity corresponds to 
critical behaviour. It is necessary to establish from the low temperature behaviour that 
the high temperature singularity is not spurious, and corresponds to a true critical 
point. 
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